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My long-term research goal is to enable robots to assist humans in various daily tasks intelligently
and reliably. To achieve this goal, I conduct research on novel robot control approaches and use
them to enable skillful and robust robot actions, especially in novel environments unseen in the
training data and adversarial environments with disturbances.

Adaptation to novel environments. Robots are typically trained to excel at specific tasks such as
relocating objects or navigating to predetermined locations. However, such robots need to be re-
trained from scratch when faced with new tasks, body changes, or visual configuration changes.
This retraining process is usually time-consuming and computationally expensive, hindering the
deployment of robots in the real world where the environment is changing continuously and some-
times drastically. In contrast, humans demonstrate remarkable capabilities to continuously acquire
new skills by drawing on past experiences. Even under physical constraints imposed by injuries,
we can still rapidly adapt to perform new tasks. Despite significant advancements in robotics and
machine learning, robots still cannot generalize their experiences across a wide range of tasks, body
configurations, or visual settings. It is crucial to empower robots with an adaptation capability sim-
ilar to that of humans if we want to deploy them in the real world.

Previous works have attempted to enable fast adaptation to novel environments by regularizing a
large policy network for multi-task learning. They achieve this by learning routing connections to
reuse part of the network weights [1] or by assigning task-specific sub-networks [2]. However, the
capacity of the large policy network grows exponentially as the number of tasks increases, leading
to enormous memory consumption and computational expense.

Motivated by the need for compact yet highly adaptable robot policies, I adopted a modular struc-
ture design of the policy networks and developed the Policy Stitching algorithm [3] and the Percep-
tion Stitching algorithm [4]. The key idea behind these two methods is to disentangle the knowledge
of different objectives such as tasks, sensors, robot kinematics, and then learn them in different
neural network modules. This allows us to reuse modules trained in different environments by as-
sembling them into novel combinations and deploying them in previously unseen environments. For
instance, given one policy trained for a 3-DoF manipulator to pick up a cube and another policy
trained for a 5-DoF manipulator to pick up a stick, if we would like to have the 3-DoF manipulator
pick up a stick now, Policy Stitching algorithm [3] can directly take the robot module in the first
policy and stitch it with the task module in the second policy.

Task Module

Task Module

Robot Module

Robot Module Task Module Robot Module

Task Module Robot Module

Original Policies Policy Stitching(A)

Target States:

(B)

Seed: 101

Seed: 103

Seed: 104

Seed: 102

Target States:

(B)

Seed: 101

Seed: 103

Seed: 104

Seed: 102
Policy StitchingOriginal Policies(A) (B)

Figure 1: Policy Stitching [3]. (A) Our framework facilitates robot transfer learning among novel combinations
of robots and tasks by decoupling and stitching robot and task modules. (B) Motivation example: A robot arm
is trained to reach goals in four different target regions using the modular policy. Results from separate training
runs with different random seeds (101-104) show misaligned latent representations.



Through my work on training neural network modules to be reusable in other environments,
I have found that the latent representation misalignment issue [5] between the encoders and de-
coders trained in different environments is the major problem that diminishes the performance of
the reassembled policy in a new environment. This observation drives my research into developing
techniques inspired by the relative representation algorithm [5] and the covariance regularization
method [6, 7, 8, 9] to enforce the invariance at the latent space of different encoders. Our experience
has shown that training the latent states to be invariant to isometric transformations and enforcing
the latent features to be independent can significantly alleviate the latent space misalignment issue
and improve the performance of the reassembled policy. Although proven to be successful in many
real-world experiments, my current approaches cannot achieve very satisfying performance on long-
horizon dexterous tasks yet, leading to my future research to further understand the latent space of
neural networks for standardizing the interfaces between different network modules.

Robustness against disturbances. Many robot learning approaches show satisfactory performance
in the ideal disturbance-free environments. However, in a real-world environment, noise and distur-
bances are inevitable, which often lead to a drastic drop in robot performance. If we want to deploy
robots in the real world, we need control policies that are not only robust to external disturbances
caused by outside perturbations, but also robust to internal disturbances caused by hardware noise
and errors. To this end, previous works [10, 11] have proposed various data augmentation methods
that inject random noise into the trajectory data. However, these methods generally cannot be effec-
tive against more malicious disturbances beyond random noise. For example, suppose a protagonist
robot arm wants to pick up a cube on the desk, while there is another adversarial robot arm deliber-
ately blocks in the way of the protagonist or moves the cube away from the grasp of the protagonist.
In this case, a robot trained with data augmentation techniques can no longer be robust enough to
accomplish the task. How can we teach a robot to avoid attacks and recover from failures in an
adversarial environment?
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Figure 2: Adversarial skill learning for robust manipulation [12]. The protagonist tries to maximize the reward
while the adversary tries to minimize it. (a) An external disturbance, the protagonist is disturbed by another
adversary robot. (b) An internal disturbance, the protagonist joint action is under the disturbance of adversarial
action on each joint of the robot.

Inspired by the training pipeline of the Generative Adversarial Network (GAN) [13], I proposed the
Adversarial Skill Learning method [12]. The key contribution of this approach lies in the adversar-
ial pipeline design of the training process. Specifically, we introduce an adversary agent to disturb
the protagonist agent. During the reinforcement learning process, the protagonist agent is optimized
to accomplish the task, while the adversary agent is optimized to obstruct the task. These two phases
of optimization occur iteratively. After this competitive GAN-style training process, the adversary
agent learns dexterous skills to attack the protagonist agent, while the protagonist agent is trained to
be robust against malicious adversarial attacks as well as various random perturbations.

While my proposed method shows a pronounced advantage over vanilla data augmentation, it still
requires manually tuning the optimal amplitude range of the disturbance for the training. In my
future research, I aim to enhance the Adversarial Skill Learning framework with the recent advances
in the diffusion policy [14] and the foundation models [15]. Along this path, I believe I can push the
limits of robot control robustness, enabling reliable deployment of robots in the real world.
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Recently, I began to explore the application of foundation models in my research agenda. Pre-
vious research has shown that large language models (LLMs) can effectively design and improve the
reward functions of some robotic tasks trained with reinforcement learning (RL) [16, 17]. We tested
this idea on some difficult quadruped robot locomotion tasks and found that the training process con-
sumes very expensive computation resources for parallel reward functions searching, yet the trained
robots sometimes cannot achieve satisfying performance, showing unnatural gait patterns or strug-
gling to accomplish the tasks. In the short term, my research objective is to apply vision-language
models (VLMs) on model-based reinforcement learning for more efficient training computation and
better performance that satisfies the human preferences [18]. In the long term, I would like to ex-
plore leveraging the LLMs and VLMs for state and action abstraction learning, which I believe is a
promising path towards general robotic intelligence.

Looking further, my very long-term goal is to develop general embodied intelligence that assists
people in every aspect of their work and daily lives. To achieve this goal, we need to have a deeper
understanding of the mechanisms behind both natural and artificial intelligence. Based on the ad-
vances in understanding the source of “intelligence”, we can build robotic systems that push the
limits of robustness and adaptation capabilities that I previously focused on, as well as many other
performance facets that I am excited to explore.
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